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NUMERICAL APPROXIMATIONS OF ALGEBRAIC 
RICCATI EQUATIONS FOR ABSTRACT SYSTEMS 

MODELLED BY ANALYTIC SEMIGROUPS, 
AND APPLICATIONS 

I. LASIECKA AND R. TRIGGIANI 

ABSTRACT. This paper provides a numerical approximation theory of algebraic 
Riccati operator equations with unbounded coefficient operators A and B, 
such as arise in the study of optimal quadratic cost problems over the time 
interval [0, oo] for the abstract dynamics j = Ay + Bu. Here, A is the 
generator of a strongly continuous analytic semigroup, and B is an unbounded 
operator with any degree of unboundedness less than that of A . Convergence 
results are provided for the Riccati operators, as well as for all the other relevant 
quantities which enter into the dynamic optimization problem. The present 
numerical theory is the counterpart of a known continuous theory. Several 
examples of partial differential equations with boundary/point control, where 
all the required assumptions are verified, illustrate the theory. They include 
parabolic equations with L2-Dirichlet control, as well as plate equations with a 
strong degree of damping and point control. 

1. INTRODUCTION: CONTINUOUS AND DISCRETE OPTIMAL 

CONTROL PROBLEMS; MAIN RESULTS; LITERATURE 

1.1. Statement of the continuous problem: Assumptions and main results. Con- 
sider the following optimal control problem: Given the dynamical system, 

(1.1) yt = Ay + Bu; y(O) = Yo E H, 

minimize the quadratic functional 

(1.2) J(u, y) = [lRy(t)Hi + Hu(t)H1u dt 

over all u E L2(0, 0o; U), with y a solution of (1.1) with control function u. 
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We shall make the following assumptions on (1.1), (1.2): 
(i) H, U, and Z are Hilbert spaces. 
(ii) A: H D 9(A) -* H is the generator of a strongly continuous (s.c.) 

analytic semigroup eAt on H, t > 0, generally unstable on H, i.e., with 
No = lim[(lnll exp(At)ll)/t] > 0 as t -+ +oo in the uniform norm 2(H), so 
that IIeAt,, ? Me(w0+e)t for all e > 0, t > 0, and M depending on coo + e; 
we then consider throughout the translation A = -A + wI, w = fixed > too 
so that A has well-defined fractional powers on H and -A is the generator 

-At At 6 of an s.c. analytic semigroup e- on H satisfying lfe- ? < Me 5t, t > 
O; aJ = co - coo - e > ; it will be used without further explicit note that 

l0(A), H]1_0 = O(A), 0 < 0 < 1, e.g., [28, Theorem 1.25.3, p. 103]. 
(iii) B: U D 2(B) [2(A*)]I, the dual of 2(A*) with respect to the H- 

topology, A* being the H-adjoint of A; more precisely, it is assumed that B* 
is A *7-bounded, or equivalently, 

(1.3) (A)-7B E ?(U; H) for some constant y, 0 < y < 1. 

(iv) The operator R is bounded: 

(1.4) REf(H,Z). 

Hypotheses (i)-(iv) are assumed to be in force throughout the paper and shall 
not be repeated. 

The next assumption guarantees existence of a unique optimal pair {u0, y0} 
of the optimal control problem (1.1), (1.2): 

(v) Stabilizability Condition (S. C.): 

there exists F E 2(H; U) such that the s.c. analytic semigroup 

(1.5) e(A+BF)t (as guaranteed by (1.3), see below) is exponentially 

stable on H, i.e., le (A+BF)t Llff) < MFeW-Ft for some co > O0 

(Equation (1.3) says that F*B* is ((A)*)Y-bounded; thus, since y < 1, A* + 
F*B* is the generator of an s.c. analytic semigroup on H, and the same holds 
for A+ BF.) 

Finally, we shall make an assumption which guarantees uniqueness of the 
solution of the corresponding Algebraic Riccati Equation. 

(vi) Detectability Condition (D.C.): 

{ there exists K E Y(Z; H) such that the s.c. analytic 
(1.6) semigroup e (A+KR)t is exponentially stable on H, i.e., 

e (A+KR)t 1 < MKe WKt for some Wok > 0. 

The following main result for problem (1.1), (1.2) has been established in 
the literature either directly [9, 8] (from the Riccati equation to the control 
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problem), or through a variational argument [17] (from the control problem to 
the Riccati equation). 

Theorem 1.0 [9, 17, 8]. (1) Under the stabilizability condition (S.C.) = (1.5), 
there is a unique solution {u0, y0} of the optimal control problem (1.1), (1.2). 

(2) Under the additional delectability condition (D. C.) = (1. 6), there is a unique 
nonnegative operator P = P* E 5(H) such that, with u0(t) = u0(t; yo) and 
y0(t) = y0(t; yO), yO E H, we have 

(1.7) u u(t)=-B*Pyo(t), 0<t <oo, 

where (Bu, V)H = (u, B*v)u, and P satisfies the following Algebraic Riccati 
Equation (A.R.E.): 

(1.8) (A*Px, Y)H + (PAx, Y)H + (R*Rx, Y)H - (B*Px, B*Py)u 

( o Vx, y E O(A6), anye > 0. 

Moreover, 
(3) 

(1.9) (A*) P E (H) Ve > 0 

( e = 0, if A is self-adjoint or normal, or similar to a normal operator); 
(4) 

(1.10) J(U A = (P0 OI YOH; 

(5) 

(1.11) B*P E 5 (H, U); 

(6) the s.c. analytic semigroup ?(t) = eApt = e(A-BB*P)t generated by A 
A - BB*P is exponentially stable, 

(1.12) Ile (A-BBP)t 
IY(H) 

< Mpe-')Pt for some cop > 0. 

Further properties are collected in ?2.1; see in particular identity (2.10) 
for P. 

1.2. Approximation of dynamics and related properties. The main goal of this 
paper is to provide a numerical algorithm for the computation of the solution 
to the Algebraic Riccati Equation (A.R.E.) and to prove the desired convergence 
results. 

1.2.1. Approximation assumptions. 

Approximating subspaces. We introduce a family of approximating subspaces 
hc H n (B*), where h is a parameter of discretization which tends to zero, 

0 < h < ho. Let Hh be the H-orthogonal projection of H onto Vh with the 
usual approximating property 

(1.13) IIHhx xIIH - 0 for all x E H. 
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Approximation of A. Let Ah: Jh - j Vh be an approximation of A which sat- 
isfies the following requirements (A. 1) and (A.2): 

(A. 1) uniform analyticity; formulation in t-domain: 

(1.14a) IIAe <h II (H)> ' X+ t> O < 0 < 1 h 0~6 t 

(the cases 0 < 0 < 1 follow by interpolation from the endpoint cases 0 = 0, 
0 = 1), with constant co independent of h; 

equivalent formulation in A-domain: for a > w0,, there exists 
Xapp(A) = Xapp(A; a; Oa)' a closed triangular sector containing 

the axis [-oc, a] and delimited by the two rays a + pe+ioa for 
some 7/2 < Oa < So < 27r, 

associated with the analytic semigroup e A, and there exists ha such that, if 
Xc denotes the complement of X in C, then for all 0 < h < ha we have 

a (Ah) = spectrum of Ah c Xapp(A), 

(I.14b) IIR( , Ah)AhII,(H) < R VA E 1app(A) 0<6<1 

(the cases 0 < 0 < 1 follow by interpolation from 6 = 0 and 6 = 1 ), R(A,*) 
being the resolvent operator. 

(A.2) 

(1.15) IIFhA^1 - A hF~hI- (H) < Ch" for some s > 0 independent of h. 

Approximation of B. We shall assume that the operators B: U -* [?(A*)]/ 
and Bh: U - Jh satisfy the following approximating properties, where y and 
s are defined by ( 1.3) and ( 1. 15), respectively: 

(A.3) ('inverse approximation property') 

(1.16) IIB* XhIIU + IIBxhIIU ? ChSIIXhIIH VXh e 

(A.4) 

(1.17) IIB*(Hh - I)xJIu < Chs(l-Y)IIIxtI(A*), x e(A*). 

(A.5) 

(1.18) I|B*x - B~rIh xIU < Chs(l7) X E X(A ) x 

If, in particular, we take Bh = fhB, then (A.5) is contained in (A.4).) 
(A.6) 

(1.19) l|B * hXIIU ? CII(A*)YXIIH X e (() 

Remark 1.1. Notice that assumptions (A.2)-(A.6) are standard approximation 
properties, where, moreover, in the case of spline approximations, s is the order 
of the differential operator A. They are consistent with the regularity of the 



APPROXIMATIONS OF ALGEBRAIC RICCATI EQUATIONS 643 

original operators A and B. Moreover, they are satisfied by typical schemes 
(finite elements, finite differences, mixed methods, spectral approximations). 
The property of uniform analyticity (A.1) is not a standard assumption and 
needs to be verified in each case. However, to our knowledge, it is satisfied 
for most of the schemes and examples which arise from analytic semigroup 
problems. For instance, a sufficient condition for (A.1) to hold true is the 
uniform coercivity of the bilinear form associated with A. (see Lemma 4.2 
in [14]). There are, however, a number of significant physical examples (e.g., 
structurally damped elastic systems), where the bilinear form is not coercive, 
while the underlying semigroups eAht are uniformly analytic (see ?6). 

1.2.2. Consequences of approximating assumptions on A. From (A.1) and 
(A.2), the following "rough" data estimates follow (see [14, Appendix] and [3]) 
(in a form to be used later): 

(i Ahtl At A~t A*t ,,hsoe(wo0+e)t (. ) Ile h n.-e IK(H- Iie 17h -Ike IIY(H) _ 

t>O, 0<0< 1, Ve>0; 
(1.21) (ii) IIR(AX A) -R(Ai, Ah)lIkIY(H) < Chs s > O. 

uniformly in A E c X (A) (see definition of c 
p (A) below (1.14a)); 

(1.22) (iii) le h h-he IAI(9(A*)tH) < Chs 

uniformly in t > 0 on compact intervals. 

1.3. Approximation of dynamics and of control problem. Related Riccati equa- 
tion. We now introduce an approximation of the control problem and of the 
corresponding Algebraic Riccati Equation. 

Control problem. Given the approximating dynamics Yh(t) C Jh satisfying 

(1.23) kh (t) = Ahyh (t) + Bhu(t), Yh (0) = 
1hYQ 

minimize over all u E L2(0, ox; U) the cost 

(1.24) J(u, Yh) = j [IIRYk(t)IIh + Iu(t)IIu]dt. 

It will be shown in ??4.1 and 4.2 that the approximating dynamics (1.23) 
is stabilizable and detectable, in fact, uniformly in h. Thus, it is a standard 
finite-dimensional result (on Vh )-which is, in fact, contained in Theorem 1.0 
when specialized to Vh-that there exists a unique Riccati approximating op- 
erator Ph. nonnegative self-adjoint, associated with (1.23), (1.24), solution of 
the following Algebraic Riccati Equation (A.R.E.)h: 

(1.25) (APkxh X Yh)H + (PhAhxh Yh)H + (RXh, Ryh)Z 

=B(BPhxh, Bh*PhYh)U VXhk Yh E VhJ 
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Equation (1.25) leads to a standard matrix Riccati equation for the numerical 
solution of which there exists a vast literature (see, e.g., [12]). Further properties 
of the approximating problem will be collected in ?2.2; see in particular the 
identity (2.20) for Ph. 

1.4. Main results of approximating schemes: Theorems 1.1 and 1.2. 

Theorem 1.1. Assume 
I. the continuous hypotheses (1.3), (S.C.) = (1.5), (D.C.) = (1.6), and, in ad- 

dition, 

(1.26a) (a) either R> 0, 
(1.26b)1 

(b) or else A - KR: H 
- 

H compact; 

(1.27a) (a) either B*A 1 H U compact, 
(1.27b) (b) orelseF: H U compact; 

II. the approximation properties ( 1.3) and (A.1) = (1.14)-(A.6) = (1.19). 
Then there exists ho > 0 such that for all h < ho the solution Ph to (A.R.E.)h 

in (1.25) exists, is unique, and the following uniform bounds and convergence 
properties hold true: 

(i) 

(1.28) IleAPhthP(h) ? Cpe-)Pt, co > 0 uniformly in h 

(see Theorem 4.6, equation (4.27)), where 

(1.29) Ah P =Ah-BhB*Ph. 

(ii) 

(1.30) Il(A*)1PP 11H) + II(Ah*)l/ PhAI/ I(H) < Ce 
ye > 0, uniformly in h 

(see Theorem 4.7). 
(iii) 

(1.31) HPh1Ih PH (H)<Ch ?* 0 as h 10, Oe0 < s(1-y) 

(see Theorem 5.1, equation (5.1)). 
(iv) 

(1.32) JIB*Ph7Ih B*PIIY(H;U) -> 0 as h 1 0 

(see Theorem 5.3, equation (5.5)). 
(v) For all eo <s(1 -2y), 

(1.33) supe 5Pt uh(tFhx) 0u(tx)H < Ch6 ? O ash tO, xEH 
t>O 

II (H;U) 

(see Corollary 5.5, equation (5.9)). 
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(vi) For all eo < s(1 - y), 

(1.34) lYyh(*, FIhX) -y0(., rIX)IIY(H;L2(O o;H)) 
< Ch"O -? 0 as h t 0 

(see Lemma 5.4, equation (5.7)). 
(vii) 

(1.35) lvY5(*, FIhx) -y(., X)llc([O ,];U) -?0 ash t 0, x E H 

(see Lemma 5.4, equation (5.8)). 
(viii) For all eo < s(1 - y) andfor all e > 0, 

(1.36) sup te eWP 
Hyho(t, x) -y (t, X)I2l(H) 

< Ch"O -+ 0 ash 1 0 
t>O 

(see Theorem 5.2, equation (5.4)). 
(ix) For all eo < s(1 - y), 

(1.37) J(uo(., Hhx), y5(. Hhx)) - J(u (. x), y?( x))I < Ch?O -+ 0 

as h 0 0 

(consequence of property (iii) in (1.31) and of (1.10) and (2.23)). 
(x) Moreover, if in addition, for some 0 < 0 < 1, Vh C 2((A *) ) and 

(1.38) VA*) XhAH ? CoH(Ax)6xhH or (A*) (AJ ) E Y(Vh, H), 

then (see Proposition 5.6, equations (5.11), (5.12)), 

(1.39) (x1) ||(A *)(PhrIh - P)XIIH -+ 0 as h l 0, x E H, 0 < 0 < 1; 

(1.40) (x2) I (A )O(P17IP)AO XH?0 ash tO, xEH, 0?<2 . 

Remark 1.2. Assumption (1.38) typically holds true with 0 = . This is cer- 
tainly the case when A is coercive and Ah is a standard Galerkin approximation 
of A, i.e., (AhXh h Yh)H = (AXh ' Yh)H . 

Remark 1.3. If A is self-adjoint (or, more generally, if A = AI + A2, with AI 
self-adjoint and A2: H D B((-A1)l ) I H is bounded), one can take 0 = 

in (1.40). 

Theorem 1.2. (i) The following uniform exponential stability holds true: 

(1.41) lle(A-BBhPh)tyH ? Ce ?c >0, 

under the same assumptions as in Theorem 1.1. 
(ii) Moreover, 

(1.42) sup e&~6t le(A-BB-Ph)t - e(A-BB*P)t L(H) - ash 1 0 

t>O H 

Theorem 1.1 provides the basic convergence results (with rates) for the op- 
timal solutions of the approximating problem (1.23), (1.24), the corresponding 
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Riccati operators, and gain operators, to the same quantities of the original 
problem (1.1), (1.2). 

The advantage of Theorem 1.2 is this: It states that the original system, 
once acted upon by the discrete feedback control law given by u*(t, Hhx) = 

-B*Phyh(t, Hlhx), yields (uniformly) exponentially stable solutions (see also 
[18, ?4.3]). 

Remark 1.4. Instead of the original inner product (xh Yh )HI one can introduce 
an equivalent inner product (xh, Yh )Hh, where C1 11Xh1HH < IlXhllHh < C2HIXhH1H 

In some situations, it is more convenient to work with a discrete inner product 
)H SO as to simplify the computations for the adjoint operators for the 

discrete problem. 

Remark 1.5. The literature on approximating schemes of optimal problems and 
related Riccati equations generally assumes (see [1 1]) 

(i) convergence properties of the "open loop" solutions, i.e., of the maps 
u -* y of the continuous problem; 

(ii) "uniform stabilizability/detectability" hypotheses for the approximating 
problems. 

In contrast, our basic assumptions are: 

(a) stabilizability/detectability hypotheses (S.C.)/(D.C.) of the continuous 
system; 

(b) a "uniform analyticity" hypothesis (A. 1) on the approximations. 

Starting from (a) and (b), we then derive both the convergence properties of 
the open loop and the uniform stabilizability/detectability hypotheses-(i) and 
(ii) above-which are taken as assumptions in other treatments. Thus, the the- 
ory presented here is "optimal," in the sense that it assumes only what is strictly 
needed. Indeed, it can be shown that assumptions (A. 1) and (S.C.)/(D.C.) are 
not only sufficient, but also necessary, for the main theorems presented here. 
These considerations are an important aspect of the entire theory, since, in the 
case where B is an unbounded operator, the requirement, corresponding to (i) 
above in other treatments, of convergence Lh -* L of the open loop solutions 
(see (2.1), (2.1 1) below) is a very strong assumption. Generally, even when L 
is bounded and the scheme is consistent, it may well happen that the scheme is 
not even stable, i.e., Lh may not be uniformly bounded in h. The properties 
of the composition e AtB may not be retained in the approximation eAhtB 

Special care must be exercised in approximating B. 

1.5. Literature. Within the literature concerned with approximation schemes 
for Algebraic Riccati Equations (A.R.E.) in infinite-dimensional spaces, we shall 
refer here only to works which focus on the case where the original free dynamics 
is modelled by an analytic semigroup e At, as in the present paper. Approxi- 
mation results for parabolic problems with distributed controls, i.e., with the 
operator B bounded (y = 0 in (1.3)), are given in [1]. Next, [18] analyzed 
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the case of a parabolic problem defined on a bounded domain n C Rn with 
Dirichlet boundary control, via an abstract semigroup approach, where then 
y = 4 +e in (1.3), i.e., the operator A (314+e)B is bounded for all e > 0. This 
case may be viewed as a canonical illustration of the purely abstract situation 
where one has A YB bounded for y < 1 , and A has compact resolvent. Thus, 
the treatment in [18] works equally well, mutatis mutandis, in the abstract case 
of an analytic semigroup generator A with compact resolvent, and with A YB 
bounded, 0 < y < 1. There is a natural "cutting line" in the range of values 
of y, which crucially bears on the degree of technical difficulties present in the 
treatment of the optimal control problem and its algebraic Riccati approxima- 
tion: this is given by the special value y = 2 

Indeed, if A YB is bounded with y < 2, then the corresponding input - 

solution operator L is a priori continuous into C([0, T]; H), so that all the 
trajectories of the continuous dynamical system are a priori pointwise continu- 
ous in time, and the operator B*P is then a priori a bounded operator. Thus, 
in the case y < 2, a derivation of the A.R.E. may be given which closely paral- 
lels the pattern where B is a bounded operator. (The same applies to the case 
y I 1 if A is self-adjoint, or, more generally, it has a Riesz basis property on 
H.) 

Instead, if A YB is bounded, with 2 < y, the operator L is not continuous 
into C([0, T]; H), i.e., the open loop trajectories are generally not pointwise 
continuous in time. Here, a main technical difficulty is therefore to show that, 
nevertheless, the gain operator B*P is bounded. This is done by carefully 
analyzing the properties of the optimal solutions y0(t) (as distinguished from 
ordinary solutions y(t)) and by eventually showing via a boot strap argument 
that the optimal solutions y0(t) are pointwise continuous in time (unlike ordi- 
nary solutions y(t) which are only, say, in L2(0, T; H)). 

The strategy outlined above for the case y > 2-which was successfully im- 
plemented in [18] in the canonical case of a parabolic equation with Dirichlet 
boundary control, where y = 3 + e, and A has compact resolvent-is also fol- 
lowed in the present abstract treatment, which moreover dispenses altogether 
with the assumption that A has compact resolvent. This will cover, in a unified 
framework, some physically significant examples (see ?6) of damped elastic sys- 
tems, where, in fact, A does not have compact resolvent. Thus, although much 
of the conceptual and technical developments of the present paper are a natural 
generalization of the arguments in [18], there are, however, also points of de- 
parture from [ 18] which require a different analysis, because of the now missing 
property that A have compact resolvent (see Remark 5.1), which was naturally 
built in the parabolic problem [18]. Like [18], our treatment here uses, as a 
starting point, two sources: on the one hand, the properties of the continuous 
optimal control problem and related Algebraic Riccati Equation following the 
variational approach of [17]; and, on the other hand, the approximation results 
for analytic semigroups (see [14, 15, 3]). 
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The importance of having a theory of approximation valid for y > 2 is fully 
justified by important physical problems, which are not solved by the direct, 
straightforward generalization from the case of B bounded to the case of A 'B 
bounded with y < 2 . Relevant examples where y > I include, in addition to 
parabolic problems with Dirichlet boundary control, also structurally damped 
elastic equations (see ?6). 

It was suggested from various sources that it would serve a useful purpose 
in the area to write a fully abstract explicit treatment of the general case y < 1 
modelled after [18]. This is done in the present paper. Generally, we shall rely 
again on a combination of ideas and techniques of the continuous problem [ 17], 
together with general approximating properties of analytic semigroups [14, 15]. 

2. BACKGROUND MATERIAL 

2.1. Continuous problem. In order to prove the main results, Theorems 1.1 
and 1.2, we shall use explicit representation formulas (in operator form) which 
describe the optimal solution pair {u0, y0 } and the Riccati operator. The 
purpose of this section is to provide these representation formulas. To this end, 
we introduce the solution operator L of problem (1.1) when yo = 0: 

(2.1) continuous L2(0, T; U) 

(2.2) 
ok'~~~ 

A(t-T) 
i _ 

L2(0 , T. H); 
(2.2) (L u) (t) - BU(T)udT. continuous L.(O, T; U) 

, ([, T]; O(A ). 

Its L2-adjoint L*: (Lu, V)L(0 TH) = (U, L*v)L(, T;U) is given by 

(2.3) I~~~~~~~~~~T A* (Tt) (2.3) (L*v)(t) = B* j eA kt() dTc. 

We shall similarly introduce the corresponding operators related to the generator 
-A = A - wIc, rather than to the generator A: 

(2.4) (Lu)(t) = eA(tT)Bu(T) d r: continuous L2(0, 00; U) 

L2(0O ox; H); 

-A 
* 

t) 

(2.5) (L v)(t) =vB ; e A (Tr)dT: continuous L2(0, oc; H) 

-*L2(0,X c; U)- 

With w fixed once and for all, as in the Introduction below (1.2) in the standing 
assumption (ii), we introduce the notation 

(2.6) z0(t, y0) = etu (t ( y0) j (t, yo) = e ?0y0(t, Y0) 

where u0(t, yO), y0(t, yo) is the optimal pair of problem (1.1), (1.2), which 
originates at the point yo at time t = 0. We set 

(2.7) (Dt)x = (t, x) =eayo (t, x) =e t(t)x, x E H. 
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Then, the optimal control and the corresponding optimal trajectory are given 
by the following explicit formulas [17, Theorem 2.4] (where the operator A in 
[17] corresponds to -A in the present paper): 

(2.8) 5f? (., y0) = I(.)yo = [I + LL* (R*R + 2wP)]f{e y0} E L2(O, oo; H); 

2 yo) = [I+ L*(R*R + 2wP)L] 1L [R*R + 2wP]{e y0} 
(2.9a) e L2(O 00; U) 

(2.9b) = {L [R*R + 2wP]) (., x)}(t), 

with inverses well defined in L2(O, oc;*), * = H or U. The solution P to the 
A.R.E. in (1.8) satisfies the relation for x e H [17, Theorem 2.8] (where A in 
[17] corresponds to -A now), 

00 _ 
(2.10) Px=] e t[R*R + 2wPN(t)x dt. 

2.2. Discrete problem. In order to describe the solution to the discrete problem 
(1.23), (1.24), we similarly introduce the operators, 

(2.11) (Lh u)(t) = I eAh(t )Bhu(r) d : continuous L2(0, T; U) 

-+L2(0 , T; Vh) 

(2.12) (L*v)(t) = BI eAh(-t)H v(T)dT, 

with L* being the L2-adjoint of Lh in the sense of (2.2), and finally, 

(2.13) (Lhu)(t) = ie h(t )Bu(r)dr: continuous L2(0, 00; U) 

- L2(0, CX; Vh)I 

(2.14) h(Lv)(t) = Bh eh v T )vz(r)dT: continuous L2(0, 0; i") 

- L2(0, 00; U), 

where we have defined, consistently with the continuous case below (1.2), 

(2.15) A h -A h +O 

Now let {u 0(t, x), yo(t, x)} be the optimal pair of the discrete optimal prob- 
lem (1.23), (1.24), originating at the point x E Vh at the time t = 0, and 
set 

(2.16) Uh(t, x) = e-tU(t, x) Yh(t I X) =-e yh(t 0 x), 
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consistently with (2.6), (2.7). Then, the discrete optimal pair of problem (1.23), 
(1.24), is given by the following explicit formulas with YOh = I hYo E VhJ, which 
are the counterpart of formulas (2.8), (2.9) in the continuous case [18, p. 192]: 

(2.18) 9h('I Yoh) = %h( )YOh = [I + L hL hr h(R R + 2wPh)]f{ey hYOh} 
EL2(0, oc; Vh)J; 

(2.19) 

-h(.' Yoh) [I + Lh*'h(R R + 2wPh)Lhf Lhh[R*R + 2oPhI{eA YOh} 

E L2(0,X o; U). 

The corresponding Riccati operator Ph satisfies 

(2.20) PhX = f e h tlh[R*R + 2wPh]Dh(t)x dt, x E Vh. 

The proofs of our main convergence results are based on a careful analysis 
of the convergence properties of the basic operators Lh and Lh to be given in 
?3. A few more formulas to be invoked later are: 

(2.21) (t,x)= e hX+{Lh(,x)}(t), XE Vh 

(2.22) -ii(t, x) = {Lh[R*R+ 2wPhIh(., x)}(t), x E V*, 

counterparts of (2.8) and (2.9b), and finally, the counterpart of (1.10), 

(2.23) J(uoh(, x), Yho(, x)) = (Phx, x), x E V*. 

3. CONVERGENCE PROPERTIES OF THE OPERATORS 

Lh AND L*; L' ANDL h h Lh AN 

Lemma 3.1. Let assumptions (A. 1) = (1. 14) through (A.6) = (1. 19) hold true. 
Then we have for all 0 < h < ho, with constants independent of h: 

(3.1) (i) IIBhe h n B*e II < C h efwoe)t t > 0; 

(3.) (ii) 11B~ 
t ri lI( *); U) _ Ch e ; 

and by interpolation between (3.1) and (3.2), with 0 < 0 < 1, 

(3.3) (iii) IIBhe htflh - B e I. (c((A*)o) U) < hs(1Y) e 0 t > O. 
U) t1-0 

Moreover, 

*A*t e (w0+e)t 
(3.4) (iv) IBhehhIy(H;U) ? C , t > 0; 

(3.5) (v) IIBe~ht h -YBHe IIy(H; U) < ChwoIet? 

t>O < 0?< 1; 
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and by interpolation between (3.5) and (3.2), with 0 < r < 1, 

* A~t *t Chs(l y)[r+(l-r)O]eI 
0+) 

(3.6) (vi) IIBe h -B e BeU) < ee t, Heht h Ht6(.r((0*)r); U) 

t>0, 0<0< 1. 
Proof. In the Supplement section. D 

The proofs of the next two main results of this section are given in the 
Supplement. 

Theorem 3.2. With reference to the operators defined in (2.1), (2.3), (2.11), 
(2.12), we have the following results under the assumptions of Lemma 3.1, where 
0 < 6 < 1 is arbitrary and 0 < h < ho: 

(3.7) (i) Lh - LIIL = JIL -L IIL < CThl 

where the first norm is in 5(L2(0, T; U); L2(0, T; H)) and similarly for the 
second norm with U and H interchanged; 

(3.8) (ii) IILh -LIIY(L (OT;U);C([OT];H)) < CTh 
Theorem 3.3. With reference to the operators defined in (2.4), (2.5) and (2.13), 
(2.14), the following convergence results hold true under the assumptions of 
Lemma 3.1, where 0 < 6 < 1 is arbitrary: 

(3.9a) (i) ILh -LL2 
= ILh L IL2 < Cfhs(ly)6 -+ 0 as h 4 0, 

where the first norm is in Y(L2(0, oc; U); L2(0, oc; H)), while the second 
norm is similar with U and H interchanged; 

(3.9b) (ii) HLh -LIo0c = JILh -L II *Hc < Chs(1 Y)' -+ 0 ash 1 0, 

where the first norm is in Y(L. (O, oo; U); C([0, oo]; H)), while the second 
norm is similar with U and H interchanged. 

4. PERTURBATION RESULTS 

The goal of the first two subsections is to show that the properties of analyt- 
icity and exponential stability of the semigroup eAFt are preserved, uniformly 
in h, by its approximations. 

4.1. Uniform analyticity and uniform exponential stability of the operators Ah F 
=Ah+BhFh and AF =A+BFh 

4.1.1. Uniform analyticity. Throughout this subsection, we let F E S(H; U), 
and we consider the operator 

(4.1) AF-A+BF: H D2(AF) - H 

which, in view of the standing assumption (1.3), generates likewise an s.c., an- 
alytic semigroup eAFt on H, t > 0 (as justified below (1.5)). In later sections, 
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but not in this subsection, we shall consider the case where F is a stabilizing 
feedback operator. We let 

X(AF) = (AF; aF; OF) 

(4.2) = (closed) triangular sector containing the axis 

(4.2)[ aF] and delimited by the two rays aF + peioF 

O<p<oo, forsome6 F 1C/2 <F < 27r, 

such that the spectrum a(AF) C X(AF). For a stabilizing F as in the as- 
sumption (S.C.) = (1.5), we have aF = -WOE < 0 in the notation of (1.5). In 
comparing X(AF) with the sector Xapp(A) D a(A) in ?1.2.2, we may say that 
we can always assume without loss of generality that one sector is contained in 
the other: If aF ? a, then we can choose Oa < OF' and then X(F) c Xapp(A); 
instead, if aF > a, we can choose Oa > OF' and then X(F) D X.app(A) . The first 
instance with aF = -COF < a occurs if F is a stabilizing feedback operator. 
For the sake of definiteness, in the lemma below we shall assume that aF ? a, 
and so X(F) c Xapp(A), the case which arises with F a stabilizing operator. 
Next, we consider the approximation of AF defined by 

(4.3) Ah F -Ah + BhFhV: Vh h 
with Fh EY (Vh; U) and Ah, Bh as in ?1.2.1. 

The next result shows that if {I Fh I} is uniformly bounded in h, then the 
operators Ah F defined by (4.3) generate "uniformly" analytic semigroups on 
H. With the stipulation above (4.3), we have the following lemma, whose proof 
is in the Supplement section. 

Lemma 4.1. Let JJFh 2,(vh U) < const, uniformly in h. Then, given 1 > J > 0 

there exist r3 > 0 and h3 > 0 such that for a suitable XcPP(A) = XcPP(A; a, 69 

JJR(A AhFh) II(vh) < _d R(A, Ah)d y(Vh) 

(4.4) (i) VA E Xcpp(A) JAI > r, 
vh, 0 < h < h? < ha; 

(4.5) (ii) ||R(A, AhFh)IY(Vh) - 1 - a - 

A and h as in (4.4); 

(4.6) (iii) JJR(A, AhF)AhFhll(J/) 1 -a - 

A and h as in (4.4). 

Remark 4.1. Lemma 4.1 on uniform analyticity holds true also for the operators 

(4.7) AF =A+BFh, ?2Y(A*)=?2((A*)Y), 

in which case the proof is simpler. 
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4.1.2. Uniform exponential stability of Ah Fh and AF . In this subsection we 
assume explicitly the stabilizability condition (S.C.) = (1.5) that F E 5(H; U) 
is stabilizing, i.e., 

(4.8) Ile FtIIS(H) C M e-t t > 0, )F > 0. 

We shall prove in the Supplement section that eAh Fht and eAFht are uniformly 
exponentially stable. 

Theorem 4.2. Assume (4.8) and, moreover, that with II Fh II < const, we have 

(4.9) IIR(AO A)B(Fhrh - F)Il (H) -* 0 as h I 0, for some A0 E p(A). 

Then, given e > 0, there exists he > 0 and a three-sided sector Xapp(AF)I which 
may be taken to be 

(4.10) Xapp(AF) = Zapp(A) n {Re)A <-?OF + C} 

1app(A) = lapp(A; a; Ga) for some a > coo, such that for all 0 < h < h6 < ha, 
the operators in (4.3) satisfy 

(4.11) (i) a(AhFh) c ?app(AF); 

(4.12) (ii) Ile AhFlly(v < Mle(- ,O 
+8 t > 0; 

IIR(A , AhFA II(V C 
(4.13) (iii) h hl(Vh) + (EF -,el 

leXapp(AF), 0?<< 1, 

uniformly in h. Thus, eAh Fht is uniformly exponentially stable and, a fortiori 
from Lemma 4.1, uniformly analytic. 

Remark 4.2. We note explicitly that either one of the following conditions is 
sufficient for assumption (4.9) to hold true: 

(i) either Fh* -- F* strongly, and B*R(AO, A*) compact H -+ U (as 
assumed in (1.27a)) (see [13, p. 151]); 

(ii) or else Fhn-h -* F in the uniform operator norm Y?(H; U). 

Remark 4.3. Theorem 4.2 holds true also for the operators AF = A + BFh in 

(4.7), where, in fact, a simpler proof applies. 

Remark 4.4. The role between assumption (4.8) and conclusion (4.12) can be 
reversed. The same proof yields the following result. Let 

Ie AhFh tI(H) < Me-dt c>0 

(instead of (4.8)), and assume the convergence property (4.9) as before. Then, 
we obtain the conclusions corresponding to (4.11), (4.12), (4.13), with Ah F 
replaced by AF; in particular, we obtain 

leA Ft|l < Me Ft, 
; F 

F > 0. 
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4.2. Uniform delectability of the generators Ah,K = Ah+F+hKRnh; L2-stability 
of Lh KBh and Lh KflhK. Throughout this subsection, we consider the oper- 
ator 

(4.14) AK= A + KR, H D 9?(AK) -H, 

with K E Y(Z; H) satisfying the delectability condition (D.C.) = (1.6), so 
that 

(4.15) le AK II < MKeWKt for some c > 0. 

Moreover, we assume throughout that R(AO A)KR: compact H -* H, which 
is hypothesis (1 .26b) of Theorem 1.1. We take the following approximations, 

(4.16) AhK = Ah + FhKRflh: Vh J Jh 

i.e., Rh = Rh -+R strongly, Kh = HhK -*+ K strongly. Then in view of 
the compactness assumption above, we have R(AO, A)KR(flh - I) -* 0 in the 
uniform norm Y?(H), and from Theorem 4.2 and Lemma 4.1, we obtain at 
once 

Proposition 4.3 (Uniform delectability). The semigroups e Ah Kt are uniformly 
analytic and, moreover, uniformly exponentially stable in h . Given e > 0, there 
exist he > 0 and a three-sided sector 

(4.17) Yapp(A )- Xpp(A) n {Re) <-w~ + E} 

such that 

(4.18) o(Ak K) C X;app(Ak) 

and 

(4.19) ie AhKtI(H) < MKe(-OK+e)t t > O. 

The following perturbation result will be invoked later. 

Lemma 4.4. For any 1 > J > 0, there is r,5 > 0 such that 

(4.20) IIB*R(A' AK)(HU) cost E pp(A L21 > 

Proof.Since ashw KIIH;U<(1 c5J)r' ap K)' ~ 3 Proof. Since, as we say in (S.4.4) of the Supplement, 

R(A, AhK) = [I-R(A, Ah)-hKR-h]-1R(A,5 Ah), 

an estimate like (S.4.5) holds true for the inverse term [ ]Fl for JII > r3, and 
thus, taking adjoints, 

IIB*R(G, A* K)II5(HU) ? 1 IIB*R(A, A*) II(H;U) 
(4.21) 1 C 

r 1 - J S e - a( l from as in (4.20) 

recalling (S.4.2) of the Supplement, and (4.20) follows from (4.21). El 



APPROXIMATIONS OF ALGEBRAIC RICCATI EQUATIONS 655 

As a corollary to Lemma 4.4, we shall derive a stability result involving the 
approximating operators 

rt 
(4.22) (L h Kfh) (t) _ 0e fhu t(T) dT: L2 (0, ??; Vh) -+itself. 

Corollary 4.5. With reference to (4.22), we have 

(4.23) (i) IlLhKBhUL2(OlOO;H) ? CIIUHL2(0O00; U) 

(4.24) (ii) IILhKhKZh IIL2(0Ooo;H) < CHlZIIL2(0o0j;Z) 

Proof. (i) By the Parseval equality, it suffices to show that 

(4.25) ||R(A, Ah K)BhiQ)4IH < Cllf(A)II)U 
for all {A: Re) = 0} c lcpp(AK). But (4.25) holds true by duality on (4.20). 
The proof for (ii) is identical. D 

4.3. Uniform stability of the feedback semigroup exp(Ah P t). Let P be the 
Riccati operator asserted by Theorem 1.0. With reference to the approximat- 
ing optimal control problem (1.23), (1.24), we may now say-on the basis of 
the results of ??4.1 and 4.2-that the approximating dynamics (1.23) is stabi- 
lizable and detectable, in fact uniformly in h. Thus, it is a standard result 
(contained in Theorem 1.0 when interpreted on Jh ) that there exists a unique 
Riccati (approximating) operator Ph associated with (1.23), (1.24), solution of 
the (A.R.E.)h in (1.25). The goal of this subsection is to prove (in the Supple- 
ment) that the corresponding operator 

(4.26) Ah p Ah-BhB*Ph 

satisfies the uniform exponential stability condition (1.28) of Theorem 1.1. 

Theorem 4.6 (Uniform stability of eAh P p't ). Under the sets of assumptions I and 
II of Theorem 1. 1, there exist c > 0, MP > 0 such that 

(4.27) VT1h(t)15f(H) = He hHtf2( < M e-O t> 
thereby proving (1.28) of Theorem 1.1. Recall from (4.26) and (2.16) that 
exp(Ah Ph) t = (Dh (t) . 

4.4. Uniform regularity of Ph. We recall that Ph is given, as described at the 
beginning of ?4.3. In this section we shall show (in the Supplement) that Ph is 
uniformly bounded not only in Y(H), as already claimed by Lemma S.4.3 of 
the Supplement, equation (S.4.19), but in fact in a stronger norm. In particular, 
we shall prove statement (1.30) of the main Theorem 1.1. 

Theorem 4.7. We have, uniformly in h 1 0, 

(4.28) (i) V(A h)6Ph Hy(H) < const6, 0 < 0 < 1; 

(4.29) (ii) ||B;PhHII(H;U) < const; 
(4.30a) (iii) Il(A*)Oph~h|A < const, 0 6 < ;I 

(4.30a '*)'hhh"I'(H) 0 _ 2' 
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or equivalently, 

(4.30b) 111 Ph < const6 

Corollary 4.8. Iffor some 0 < 1 we have 

(4.31) II(A )xhIh ? CII(A )xhIIH VXh E Vh 

then 

(4.32) I1( )OPhIKY(H) ? const6 

and, consequently, 

(4.33) Il(A )GPhA I <(H) < const6, 0< 0 < 

Remark 4.5. Assumption (4.31) holds true with any 0 < 2 for Galerkin ap- 
proximations. 

The operators Ah p generate a family of semigroups eAh, Pht which are uni- 
formly stable by Theorem 4.6. They are also uniformly analytic by the next 
corollary. 

Corollary 4.9. The operators Ah , = Ah - BhBh*Ph in (4.26) generate a uni- 

formly analytic family eAh, Ph tof semigroups. 

Proof. We just apply Lemma 4.1 with Fh = B*Ph, which is legal by the uniform 
estimate (4.29) of Theorem 4.7. o 

5. UNIFORM CONVERGENCE Ph ,h 
) P 

5.1. Uniform convergence Ph'h -* P of Riccati operators. 

Theorem 5.1 (Property (1.31) of main Theorem 1.1). For any eo < s (1 - y) 

(5.1) Iphfh -PIL19(H) < Ch"O -? 0 as h 1 0. 

The proof of Theorem 5.1 is given in the Supplement. It is based, among 
other things, on the following four operators: 

(5.2) Ap =ABB *P, Ah p=Ah BhB*P, 

(5.3) A =A-BBhP A Ah BhB*Ph . 
Phph'h IP 

The first and the fourth, which were already defined by (1.12) and (4.26), refer 
to optimal dynamics, continuous and discrete. The second and third are defined 
here for the first time. They define competitive dynamics. 
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As a corollary of part of the proof of Theorem 5.1, we obtain (see Supple- 
ment) 

Theorem 5.2 (Property (1.36) of main Theorem 1.1). For any e > 0 we have 

sup ewPttIlleAh, Phtn -Apt 

(5.4) O<t 

<Ch"06 >0 ashtO, Ve0<s(1-y), 

(t)x = eAptx = 0( x), ?h(t)Hhx = eAh, Phtihx = yh( ' hX) . 

Remark 5.1. The present proof of Theorem 5.1 is somewhat different from that 
in [18] and, moreover, it applies to the case of more general approximating 
assumptions (not necessarily Galerkin) without requiring that A has compact 
resolvent as in [18]. One may also extend to the present case of B unbounded 
the original approach of [1 1] given there for B bounded, but this route-based 
on the finite time problem-is much longer. 

5.2. Uniform convergence B*Ph h -+ B*P of gain operators. 

Theorem 5.3 (Property (1.32) of main Theorem 1.1). We have 

(5.5) IIB*Phrh- B*PIIY(H;U) - 0 as h 1 0, 

where the rate is h8o, 0 <s(l-y) if Y <. 

The proof of Theorem 5.3, given in the Supplement, requires the following 
lemma. 

Lemma 5.4 (Properties (1.33), (1.36), (1.37) of main Theorem 1.1). We have 
for eo <s(l -Y): 

(i) 

(5.6a) Hu(. FIhX) - (.' X) 
0 

(HL(0 U)) < ChO -+ 0 ash 1 0, 

equivalently by (S.4.20) with reference to (5.3), 

(5.6b) IIB*PheAhPhth - B*Pe Pt(H;L2(O U)) ChO ash 0; 

(ii) 

(5.7) lh ()rh - O) IIY(H;L2(O oo;H)) < CheO ash 0; 
(iii) for any finite 0 < T < oc, the following result, which complements (5.5), 

holds true: 

(5.8) H1[(D h0 )Hh - 
()()]XXHC([Ooo];H) -+ 0 as h 1 0, x E H, 

where Yh? hkx) = lD ()hX, y(., X) = FD(.)x (see (2.17), (2.7)). 
0 0 5.3. Uniform convergence uh- u? . 

Corollary 5.5 (Property (1.33) of main Theorem 1.1). We have (see Supplement) 

(5.9) 1 H rhx) -u(. X)Hlf(H;C([O oo];U)) < Ch oeWPt ash 1 0, x E H. 
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5.4. Convergence (A *)(Phrh - P)x -+ 0. So far, we have shown conclusions 
(1.28)-(1.37) of the main Theorem 1.1. We now complete the proof of Theorem 
1.1 by establishing properties (1.39) and (1.40) as well. 

Proposition 5.6 (Properties (1.39) and (1.40) of Theorem 1.1). Assume the ap- 
proximating property (1.38), rewritten here as 

(5.10) (A )O(A l)O E Y(Vh; H), or 

(A )OxHcH(A )O x < 0 < 1, VX E Vh. 

Then 

(5.1 1)(i) I|(A ) (Phrh-P)XIIH -+O ash 1O, xEH, <0< 1; 
(5.12)(ii) IVA ) "(Phh -P)A xHH? as h 2 0, x E H, 0? 6 

The proof is given in the Supplement. After this, the proof of the main 
Theorem 1.1 is complete. D 

Completion of the proof of Theorem 1.2 is given in the Supplement. 

6. EXAMPLES 

In this section, we illustrate the applicability of Theorems 1.1 and 1.2 to some 
partial differential equations problems which exhibit the properties required by 
the theory. A few canonical cases of diffusion/heat equations with boundary 
control and strongly damped plate equations with point or boundary controls 
will be treated. For lack of space we shall concentrate only on the three most 
representative examples, which exemplify the following situations: 

(i) y > I (heat equation with Dirichlet boundary conditions); 
(ii) y > 2 and noncoercive nature of the problem (damped plate equation 

with point control); 
(iii) y < 2 and R(A, A) noncompact (Kelvin-Voigt plate model with point 

control). 

Other examples, as the ones given in [19], can be treated in the same manner. 

6.1. Heat equation with Dirichlet boundary control. This problem has been con- 
sidered in [18]. For the sake of completeness we shall show how it fits into the 
present theory. 

(6.1.1. Continuous problem. Let Q c R n be an open bounded domain with 
sufficiently smooth boundary F. In Q, we consider the Dirichlet mixed prob- 
lem for the heat equation in the unknown y(t, x): 

(6. 1 a) Yt =y=Ay+cy in(0, T]xQ=Q, 

(6.1b) Y(o,)=y0 inQ, 

(6.1c) y =u in(0, T]xF-=X 
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with boundary control u E L2(X) and yO E L2("). The cost functional which 
we wish to minimize is 

J 0 
fIYtI2 +IIU(t)12(r}t (6.2) J(u, Y) = {IY(t)L2() 2(r)+dt 

Abstract setting (see [ 17]). To put problem (6.1), (6.2) into the abstract setting 
of the preceding sections, we introduce the following operators and spaces: 

(6.3) Ah = Ah + c2h; 9(A) = H2(Q) n Ho (Q)n 

(6.4) Z=H=L2(fl); U=L2(F), 

(6.5) Bu =-ADIu; R = I, 

where D1 (Dirichlet map) is defined by 

(6.6) h = D g iff (A+c2)h = 0 in n; hIr = g, 

(6.7) DI: continuous L2(1) - 
H 12(n) c Hl/ 2e() _ (A 

Ve > O0 

(6.8) ADh = -Ah, ?/(AD) = H 2() n Ho (K2), 

by elliptic theory, and where A in (6.5) is the isomorphic extension of A in 
(6.3), from, say, L2(2) -* [-(A)]'. 

The approximation framework for problem (6.1) and the verification of all 
required assumptions for both the continuous as well as the discrete problem 
are given in the Supplement. 

6.2. Structurally damped plates with point control. 

6.2.1. Continuous problem. The case a = 1 [4, 5]. Consider the following 
model of a plate equation in the deflection w(t, x), where p > 0 is any con- 
stant: 

(6.9a) w + W _ PAW = J(x - x )u(t) in (0, T] x K= Q, 

(6.9b) w(0,* wo; Wt(0-* u WI in Q 
(6.9c) wI: =_Aw I:= in (0, T] x r= X, 

with load concentrated at the interior point x0 of an open bounded (smooth) 
domain Q of R', n < 3. Regularity results for problem (6.9), and other 
problems of this type, are given in [27]. Consistently, the cost functional we 
wish to minimize is 

(6.10) J(u, w) = f {IIw(t)II12(Q) + IIwt(t)II2(n) + IIU(t)II12(r)}dt, 

where {wo, w 1} E [H2(n) n HlH(K2)] x L2(") . 
Abstract setting. To put problems (6.9), (6.10) into the abstract setting of the 

preceding sections, we introduce the strictly positive definite operator 

(6.11) Vh =A 2h; Z(sV) = {h E H'(Q): IhIr = Ahar = ?} 
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and select the following spaces and operators: 

(6.12) H -12r(.1/2 x L 2 Ho(Q)] x L2 U = 1 

(6.13) A= [1? p1/2] Bu= [(00) R =I 

to obtain the abstract model (1.1), (1.2). Again, approximation framework and 
verification of all required assumptions are given in the Supplement. 

6.3. Kelvin-Voigt plate equation with point control. 

6.3.1. Continuous problem. The case a = 1 [4, 5]. The Kelvin-Voigt model 
for a plate equation in the deflection w (t, x) is 

(6.14a) W +A2W + PA2W = J(x - x?)u(t) in (00, T] x Q Q 

(6.14b) w(0* wo; wt(0 *= I ( in Q, 
(6.14c) AwI, + (1-,u)Blw _ 0 in (0, T] x F= , 

(6.14d) &Aw + (1 - g)B2w _ O in X, 

with 0 < < I the Poisson modulus and p > 0 any constant, where again 
x0 is an interior point of the open bounded Q c Rn, n < 2. The boundary 
operators B1 and B2 are zero for n = 1, and for n = 2 [16]: 

B1w = 2vv2wy v2 - 2W 
(6. 1 5) B 

2W = a- [(VI 
- 

V2 ) Wxy + VJI V2 (Wyy 
- 

wXX)] 

Where 0/0T is the tangential derivative. Regularity results for problem (6.14) 
the given in [27]. Consistently with these, we take the cost functional to be the 
name as (6.10) with {wo, wI} E H2(Q) x L2(Q). 

Abstract setting. e introduce the nonnegative self-adjoint operator 

(6.16) Vh =)B2h} 

9(.;{)= h E H (Q) : A\h + (1 - #l)B h~r, = ; ah + (1-#I)B~hlr = ? 

and select the following spaces and operators: 

(6.17) H -12r 9(XV1/2 x L2 =H2(Q) x L21A U = R 
1 

(6.18) A= [_. 'p]; Bu= [d(0 0)]; R=I 

To obtain the abstract model (1.1), (1.2). Approximation framework as well as 
verification of all required assumptions are given in the Supplement. 
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